

Application Architecture Concepts
Enterprise Applications

Lyons, Christopher W.
Christopher.w.lyons@usps.gov

Abstract
Describe application architecture to take advantage of new technologies, DevOps

processes, microservices, and true agile, customer focused design.

1

Introduction

 This document is intended to describe an enterprise application architecture to take
greater advantage of the technologies and infrastructure that USPS has installed over the past
few years. Many of the benefits of this infrastructure and technology is achieved through use
across the enterprise through cross-functional teams. Having been on multiple teams, both
internal and external, I have seen how many of these technologies could benefit the
organization overall and I prepared this document as a reference to how I have approached this
infrastructure and as a document for use and adoption by others.

 I will try to describe my reasoning for this approach and what caused me to come to this
current setup. I will also try to describe how I think this could be fit into how applications are
developed and maintained within USPS but this will be limited by what I have seen and worked
with and most likely does not cover all scenarios.

 The concepts and designs presented in this document were reached in response to
actual USPS application design and development issues, not theory or 3 rd party products. They
were created to meet real business and developer needs with tangible benefits and promising
future results.

2

Contents

Introduction ... 1

Contents .. 2

Overview ... 3

Technical Details – UI/UX ... 7

Infrastructure ... 7

Technical Details – Server-Side Application .. 10

Microservice Rules and Recommendations ... 11

3

Overview

From a high level perspective there are 3 high level components to describe.

• UI/UX design, infrastructure, architecture, deployment, process

• Application services / microservices design, deployment, process, and architecture

• DevOps integration including testing, monitoring, and CI process

Most applications are an implementation of the following design (From USPS Reference
Architecture):

4

This architecture provides for an easy to execute, easy to scale implementation but is limiting in
many ways. Generally this pattern requires an application to be designed as a “silo”, the
application team designs and develops the entire stack; the views/pages, the application
code/integration layer, and the database design. Many application teams will use frameworks
which assist in some ways but limit options in many others. An application team that chooses
the struts/tiles framework is generally not able to work with a separate UI/UX team as the
framework is intended to work with specific view technology that is not used by UI/UX design
resources. Many struts/tiles applications use server-side HTML generation via JSP use.

5

Design/front end development teams will not work with JSP technology as it is not appropriate
to do so. JSP, at its core, is a java servlet and requires a java environment to execute while
front-end design teams are required to build designs for browsers using HTML/CSS/and
javascript. These are fundamentally different approaches and the process of accepting a
“wireframe” deliverable from a design firm and integrating it into a struts/tiles based application
vs including a design team as a part of the application team in order to use a true Continuous
Integration process. A struts/tiles based application necessarily requires one deliverable to be
complete BEFORE the other can begin; the wireframes must be complete before the application
code can be written or the application code must be written or complete for the design team to
write the UI/UX code based on the application code.

 The solution for many of these problems are ALSO described in the USPS Reference
Architecture, this design:

The way to read the solutions in this provided architecture is to view the server-side generated
content as a “service” to the browser based content, which can then be built using a responsive,
rich client experience. The “API’s” that the “client tier” in the above design calls is the
application server-side code and both teams can build their components of the system based on
that spec at the same time thus delivering presentable solutions much faster. From that point
optimization/CI/DevOps approaches reducing the complexity of both parts, the browser/client
tier, and the server-side application code design.

6

 Microservices are an extension of this approach as the application the end user sees is
the browser web page but that webpage can be composed of different services from different
applications. A simple USPS example would be Click-N-Ship (CNS).

In this application the familiar CNS content underneath the dialog box is loaded from the
cns.usps.com website but a developer familiar with the browser debug tools could investigate
and find that the AddressBook content comes from gab.usps.com. By expanding this approach
USPS applications could be developed as mashups of UI/UX content developed and maintained
separately from the server-side code that provides the data. This approach could also free
application teams unfamiliar with UI/UX development from developing inferior websites that
don’t meet USPS standards as the browser content could and should be developed by
developers with the appropriate expertise.

7

Technical Details – UI/UX

 The overview described application designs that can take advantage of newer
application design techniques, I would like to now describe some of the details of the UI/UX side
of the application.

Infrastructure

 UI/UX content and the design firms that build it professionally work with static content
types. Generally this means HTML/CSS/JS but could be expanded to include anything that is a
“static” resource. That is a resource that is sent unchanged by the server that serves that
resource. It could mean video and other media, flash files, office documents, PDF’s, SVG
content, and more. USPS currently operates multiple products for service static content to end
users:

• Apache/IBM IHS/Microsoft IIS webservers – These webservers are the main product by
which USPS developed/operated applications serve static content to end users and are
a component of the reference architecture.

• Teamsite – This is a product used for static content for blue.usps.gov, liteblue.usps.gov,
about.usps.com, and usps.com websites and probably more.

• Akamai CDN – A more recent addition to USPS static content infrastructure. Akamai
provides many functions beyond content hosting.

Browsers have been made much more functional, standards compliant, faster, and

secure and are a very important, if not the most important, part of an enterprise application.
Standards compliance, functionality, and security has improved to a point where javascript
and other browser technologies are first class languages treated the same way as java, c#,
and c++. That also means that the UI/UX components should be worked by experts and not
just any group.

The complexity in website design has encouraged the development of many frameworks

and resources to assist engineers in much the same way that frameworks were created for
J2EE applications. This is another reason to separate the server-side application code team
from the UI/UX development team as there is no enterprise wide standard “platform” for
UI/UX code as there is for J2EE applications. The platform is the browser and having
multiple teams creating individual environments does not create opportunities for reuse and
often creates the problem of websites of widely varying quality which in turn creates a bad
experience for the most important people to the enterprise, the customer.

The choice of UI/UX framework / architecture is not as important at the moment as the

design of enterprise applications. A proper enterprise content management setup will allow
for rapid enhancement and change based on the customer’s environment (browser
technology). A UI/UX team should have the responsibility of creating and managing ALL
content across ALL applications.

8

9

 A permanent UI/UX group should be created and this group responsible for all
development and maintenance of the USPS “website”. View the entirety of the USPS presence
as 1 application. This will create the environment and focus that is needed to reduce
duplication, increase standards compliance, and speed changes.

 I would strongly recommend a Content Management System (CMS) be used as this will
allow for permission management and coordination between the groups since everything should
be run through the CMS. USPS does NOT currently have an enterprise Content-Management-
System so options would be worth reviewing. Cloud-based products should be given strongest
priority as the infrastructure described above allows for static content to be flexibly worked from
anywhere. The data from the microservices is the only secure piece of the enterprise and the
microservices themselves should be the only thing hosted on private infrastructure.

10

Technical Details – Server-Side Application

 Service Oriented Architecture has been around for a while and microservices are the
natural evolution of enterprise services. By treating the browser as a first class component of
an enterprise application architecture it becomes apparent that server-side code should be the
“services” that the browser client uses. These are basic microservices.

For example, Click-N-Ship(CNS) has a “FetchServicesAction” that the users browser calls when
the user wants to get rates and products for their desired label.

This call was made by the browser to a microservice hosted on the CNS infrastructure. The
microservice returns all of the information needed by the page (labelInformation.shtml) to render
the response to the user. This microservice could be called by ANY application or ANY page. If
a change was desired to this page and a robust CMS system was in place, this change can be

11

made by the UI/UX team without any interaction with the CNS team at all. Only if the
microservice API needs to change does the CNS team need to be involved and depending on
the change the UI/UX team may not need to be involved.

 Microservices should return JSON for their format. JSON is smaller over the wire than
XML, more efficient, easier to use and understand, more flexible, and can be read by both
servers and browsers natively. If JSON cannot be used for some reason XML is acceptable as
it can also be used by both browser and server-to-server communication.

 Microservices do NOT need struts or spring and it would be strongly advised to not use
either of them. Modern application servers, even free-open source ones, contain enough
infrastructure to make these libraries unnecessary. These frameworks overly complicate
application code and increase the ramp up time of new developers to join a team and begin
productive work. These services should be written as thinly as possible to allow for simple
migration and deployment via DevOps/CI operations.

Microservice Rules and Recommendations

Microservices should be developed carefully to provide maximum benefit at a low cost. The
following are principals used to that effect:

• Use jax-rs framework or .net equivalent (for .net applications)

• Do not use session or any other server state mechanism

• Output should be JSON or XML.

• Cross-domain services should enable and configure CORS but if careful analysis is
performed JSONP is acceptable in cases where no private data is contained. In a
previous example “FetchServiceAction” contains private data and should not return
JSONP. CNS should enable CORS for cross-domain requests

• Microservices cannot contain or return UI content of any kind.

• Should be designed to be as platform independent as possible. Use configuration if
needed. Do not use the filesystem or OS unless that is a specific function of the
microservice.

• Document microservice API’s as a regular API.

• Always deploy through scripting and automation infrastructure. This is VERY
important to build and maintain flexibility within the organization. White glove
deployments are not scriptable and degrade the environment for everyone.

• The microservice team members should not be on the UI team for the app they are
working on. This creates laziness in the code as developers can write the
microservice and the UI that interacts with it and cut corners.

• Always rotate teams. Microservice code should be small and focused on a specific
task. Having a microservice so specialized that only 1 person is familiar with and
comfortable working on has been designed wrong. Individual developers should be
able to pick up a microservice comfort level within 2 weeks. Rotate developers every
6 – 12 months, or more or less often based on desires but rotation should always
occur after a period of time.

	Introduction
	Contents
	Overview
	Technical Details – UI/UX
	Infrastructure

	Technical Details – Server-Side Application
	Microservice Rules and Recommendations

