Application Architecture Concepts
Enterprise Applications

Abstract

Describe application architecture to take advantage of new technologies, DevOps
processes, microservices, and true agile, customer focused design.

Lyons, Christopher W.

Christopher.w.lyons@usps.gov

Introduction

This document is intended to describe an enterprise application architecture to take
greater advantage of the technologies and infrastructure that USPS has installed over the past
few years. Many of the benefits of this infrastructure and technology is achieved through use
across the enterprise through cross-functional teams. Having been on multiple teams, both
internal and external, | have seen how many of these technologies could benefit the
organization overall and | prepared this document as a reference to how | have approached this
infrastructure and as a document for use and adoption by others.

I will try to describe my reasoning for this approach and what caused me to come to this
current setup. | will also try to describe how | think this could be fit into how applications are
developed and maintained within USPS but this will be limited by what | have seen and worked
with and most likely does not cover all scenarios.

The concepts and designs presented in this document were reached in response to
actual USPS application design and development issues, not theory or 3w party products. They
were created to meet real business and developer needs with tangible benefits and promising
future results.

Contents

T 1o [T 1o o A SRR 1
L0701 =] 01 K= PP PTP T TPPRP 2
OVEIVIBW ...ttt ettt e ekttt e e ettt e e e sttt e oo sttt e e e aa b bt e e e e s b b et e e e s s be e e e e aaRee e e e e anbbeeaeenbeeeeesnsbneeenne 3
Technical DEtaAlS — UI/UXottt ettt e sttt e et e e s st e e e s s nneeee s 7

1= S (0 o (0 (=PSRRI 7
Technical Details — Server-Side APPlICAtIONcc.uviiiiiiie e 10

Microservice Rules and ReCOMMENUATIONSuuiiiiieiiiieiieee e et e e e e e s e e eaaeeesesaneeseees 11

Overview

From a high level perspective there are 3 high level components to describe.

UI/UX design, infrastructure, architecture, deployment, process
Application services / microservices design, deployment, process, and architecture
DevOps integration including testing, monitoring, and Cl process

Most applications are an implementation of the following design (From USPS Reference
Architecture):

m—-Tier Applicaticormn
Cormtsain

Creskiop || PAcEila | [Ta bElet

User Iinterfa ce

M =rm el Birooa Ser

Spplicaticomn Delivery Comidraller

Wolk S arver

/A

Application Intagraton

Sypaprlication Senrver

Serraer=Side FProsgr=armrmirg
Langusgg e

Pl =] Wilsew Coovreirael ler
| Sruts I I Sprirmng |

Eu=smass Laocgiac

| P Ca e | | Spring |

Do t-to-FRelation sl b Seesiing

| mibernate | | myvsans |

| iBatis | | =r: |

[CaAat=mlamase S arwar

S

[on =y =)

L mecd

Lol 'I_u-s-r> &E‘FB"‘I’E—:;} | Ft;_aldml;ap | | FP=iharn | |

T esr T o=
o T P e T

n-Tier Application
Contan

Desktop || NMobilo 11 Tablet

User Infiterface

Internetl Srowser

Application Delivery Controlier

Web Server

=y

Application Intagraton

ASpplcation Server

Server-Side FProgramming
Language

Nodel View Controlier
| Struts 11 Spring |

Busmess Logic

I POJao] [Spring l

Ouject-to-Relational Mapoing
| rubernste | | mysaus |

| iBatis 1 | IPA |

OCatabhase Server

==

it

Leoegoncd

Locical 1‘:0') @ R:O‘:;"ma- = I I Poctern] I

Other T ech
Componert

This architecture provides for an easy to execute, easy to scale implementation but is limiting in
many ways. Generally this pattern requires an application to be designed as a “silo”, the
application team designs and develops the entire stack; the views/pages, the application
code/integration layer, and the database design. Many application teams will use frameworks
which assist in some ways but limit options in many others. An application team that chooses
the struts/tiles framework is generally not able to work with a separate UI/UX team as the
framework is intended to work with specific view technology that is not used by UI/UX design
resources. Many struts/tiles applications use server-side HTML generation via JSP use.

Design/front end development teams will not work with JSP technology as it is not appropriate
to do so. JSP, at its core, is a java servlet and requires a java environment to execute while
front-end design teams are required to build designs for browsers using HTML/CSS/and
javascript. These are fundamentally different approaches and the process of accepting a
“wireframe” deliverable from a design firm and integrating it into a struts/tiles based application
vs including a design team as a part of the application team in order to use a true Continuous
Integration process. A struts/tiles based application necessarily requires one deliverable to be
complete BEFORE the other can begin; the wireframes must be complete before the application
code can be written or the application code must be written or complete for the design team to
write the UI/UX code based on the application code.

The solution for many of these problems are ALSO described in the USPS Reference
Architecture, this design:

Responsive Design Ul
Mainstream

| Desktop | | Mobile | | Tablet |
Internet Browser
o User Interface Programming
i= Languages
= [Css | CsSS |[CSS |
@ [HTMLS / jQuery
G | Bootstrap || Drajo |
Client-Side MV C
AN
|/-_— |
k=
— Web Server
.
Lot
=
."/E pu i A Legend
L= C) Web APIs —_— —)
5 T T (g \[C——)| Py || OTETEN | () S
% i= | \ﬂ J h[iaﬁm[e Ruadmap) Companent Interface
]
=
N] F4

The way to read the solutions in this provided architecture is to view the server-side generated
content as a “service” to the browser based content, which can then be built using a responsive,
rich client experience. The “API’'s” that the “client tier” in the above design calls is the
application server-side code and both teams can build their components of the system based on
that spec at the same time thus delivering presentable solutions much faster. From that point
optimization/Cl/DevOps approaches reducing the complexity of both parts, the browser/client
tier, and the server-side application code design.

Microservices are an extension of this approach as the application the end user sees is
the browser web page but that webpage can be composed of different services from different
applications. A simple USPS example would be Click-N-Ship (CNS).

€2 C @ O hitpsnsuspscom/abelinformationshir w@h ‘Qbea_,ch ‘

Search Confacts Q
Process Search
Search Results 1-2¢f2 Show50 100150200
Now Showing : All Contacts MABCDEFGHIJKLMNOPQRSTUVWXYZ#

GROUP NAE HAME COMPANY LOCAON

Al Contacts (2) , SCRAVTON PAUNTED
S oS STATES

WILKES BARRE, PA
CHRIS UNITED STATES

In this application the familiar CNS content underneath the dialog box is loaded from the
cns.usps.com website but a developer familiar with the browser debug tools could investigate
and find that the AddressBook content comes from gab.usps.com. By expanding this approach
USPS applications could be developed as mashups of UI/UX content developed and maintained
separately from the server-side code that provides the data. This approach could also free
application teams unfamiliar with UlI/UX development from developing inferior websites that
don’t meet USPS standards as the browser content could and should be developed by
developers with the appropriate expertise.

Technical Details — UI/UX

The overview described application designs that can take advantage of newer
application design techniques, | would like to now describe some of the details of the UI/UX side
of the application.

Infrastructure

UI/UX content and the design firms that build it professionally work with static content
types. Generally this means HTML/CSS/JS but could be expanded to include anything that is a
“static” resource. That is a resource that is sent unchanged by the server that serves that
resource. It could mean video and other media, flash files, office documents, PDF’s, SVG
content, and more. USPS currently operates multiple products for service static content to end
users:

o Apache/IBM IHS/Microsoft IIS webservers — These webservers are the main product by
which USPS developed/operated applications serve static content to end users and are
a component of the reference architecture.

e Teamsite — This is a product used for static content for blue.usps.gov, liteblue.usps.gov,
about.usps.com, and usps.com websites and probably more.

e Akamai CDN — A more recent addition to USPS static content infrastructure. Akamai
provides many functions beyond content hosting.

Browsers have been made much more functional, standards compliant, faster, and
secure and are a very important, if not the most important, part of an enterprise application.
Standards compliance, functionality, and security has improved to a point where javascript
and other browser technologies are first class languages treated the same way as java, c#,
and c++. That also means that the UI/UX components should be worked by experts and not
just any group.

The complexity in website design has encouraged the development of many frameworks
and resources to assist engineers in much the same way that frameworks were created for
J2EE applications. This is another reason to separate the server-side application code team
from the UI/UX development team as there is no enterprise wide standard “platform” for
UI/UX code as there is for J2EE applications. The platform is the browser and having
multiple teams creating individual environments does not create opportunities for reuse and
often creates the problem of websites of widely varying quality which in turn creates a bad
experience for the most important people to the enterprise, the customer.

The choice of UI/UX framework / architecture is not as important at the moment as the
design of enterprise applications. A proper enterprise content management setup will allow
for rapid enhancement and change based on the customer’s environment (browser
technology). A UI/UX team should have the responsibility of creating and managing ALL
content across ALL applications.

O

UI/UX Team

The UI/UX team is responsible for creating
and updating all of the website content
across all of USPS.com along with integrating
the microservice data into that content. The
microservice API's are the only thing that
needs to be known by both the enterprise
application team and the UI/UX team. The
website content can be changed at any time
without involvement from the application
team.

CDN / Content
Management
platform

Sample Enterprise Architecture using existing USPS products and service

O Customer. Extel
accesses a USPS
The USPS.com \
accessed by the
browser via an
(https://cdn.usg

product).

USPS DMZ USPS microservice endpoi
e _.I.. directly. The customer’s &
— seamlessly loads the cont

endpoint (https://

customer.

Il

USPS Enterprise Application resource
microservice stack. This stack represents just
theresources necessary to host 1 microservice.
It might consist of 1 or more WebSphere, jBoss,
or Tomcat application servers. Further
discussions should be made but a webserver
(I1S, Apache, etc) should NOT be necessary or
used in this case as this resource will ONLY
return data in the form of XMLor JSON. Using a
webserver in unnecessary and wastes resources
and security can be provided by existing
network devices.

As the customers browser
fetches and loads content
the website some content
required to be loaded fror

from a USPS microservice

microservice.usps.com/
productjson) and via javas
renders the content for th

A permanent UI/UX group should be created and this group responsible for all
development and maintenance of the USPS “website”. View the entirety of the USPS presence
as 1 application. This will create the environment and focus that is needed to reduce
duplication, increase standards compliance, and speed changes.

I would strongly recommend a Content Management System (CMS) be used as this will
allow for permission management and coordination between the groups since everything should
be run through the CMS. USPS does NOT currently have an enterprise Content-Management-
System so options would be worth reviewing. Cloud-based products should be given strongest
priority as the infrastructure described above allows for static content to be flexibly worked from
anywhere. The data from the microservices is the only secure piece of the enterprise and the
microservices themselves should be the only thing hosted on private infrastructure.

Technical Details — Server-Side Application

Service Oriented Architecture has been around for a while and microservices are the
natural evolution of enterprise services. By treating the browser as a first class component of
an enterprise application architecture it becomes apparent that server-side code should be the

“services” that the browser client uses. These are basic microservices.

For example, Click-N-Ship(CNS) has a “FetchServicesAction” that the users browser calls when

the user wants to get rates and products for their desired label.

USPS.com® - Create Shipping Lab: X

€0

O & ntps

Cns.usps.com;laoe nformation.shtmi

Select a service
type.

Selecting a Priority Maile Flat
Rate product or a Priority bail
Express™ Flat Rafe product

requires ine USPS-proided

packaging

Price based on shipping a
package fom ZIP Code™ 18703
fo 18503 on 021262018

' you plan o ship Live Animals,
please go o yourlocal Post
Office.

LIUUSE SETVICE 1y

Priority Mait®

PACKAGE TYPE

Priority Mail® Flat Rale Envelope
1T x0T

Priority Mail® Small Flat Rate Box
50" X 658" 1 1508

* Priority Mail® Medum Flat Rate Box
WA xR
1388 1708 33087

Priority Maild Padded Flat Rafe Envelope
124

Priority Mail® Large Flaf Rate Box
- Ay

3 Dhispector 5 Console D Debugger {} Stylefdtor (G Peformance 4} Memoy = Network B Storsge

Il u HIML €S /S XHR Fons Images Media WS Other [Pemistlogs [Disable cache

Status Method

GET
GET

File

Domain

@ cnsuspscom

8 crsuspsom

Cause Type

Transfemed Soe Oms 0485
40118 HUKB - emms

13468 1098
13418 1098

%5

SCHEDULED DELVERY

February 23, 2018 if 2-Day Delivery

February 28, 2018 i 2-Day Delivery

February 28, 2018 i 2-Day Delivery

February 28, 2018 # 2-Day Delivery

February 28, 2018 # 2-Day Delivery

IW2min {13Tmin {17imin |

w @ Qe

SHIPPING PRICE

$670
§1.20

$13.65

§125

§18.90

Headers Cookies Params Response Timings

2 package fios
frong> on !

y Maildueg; Flat Rate Envelope

NameDisplay: Priority Mailéureg;
 Flat Rate Envelope

ry: February 28, 2018 /7 2-Day Delivesy

This call was made by the browser to a microservice hosted on the CNS infrastructure. The
microservice returns all of the information needed by the page (labelinformation.shtml) to render
the response to the user. This microservice could be called by ANY application or ANY page. If
a change was desired to this page and a robust CMS system was in place, this change can be

na

v

FOE®0EX

H

Stack Trace Security

strong> 18703 to A

made by the UI/UX team without any interaction with the CNS team at all. Only if the
microservice API needs to change does the CNS team need to be involved and depending on
the change the UI/UX team may not need to be involved.

Microservices should return JSON for their format. JSON is smaller over the wire than
XML, more efficient, easier to use and understand, more flexible, and can be read by both
servers and browsers natively. If JSON cannot be used for some reason XML is acceptable as
it can also be used by both browser and server-to-server communication.

Microservices do NOT need struts or spring and it would be strongly advised to not use
either of them. Modern application servers, even free-open source ones, contain enough
infrastructure to make these libraries unnecessary. These frameworks overly complicate
application code and increase the ramp up time of new developers to join a team and begin
productive work. These services should be written as thinly as possible to allow for simple
migration and deployment via DevOps/Cl operations.

Microservice Rules and Recommendations

Microservices should be developed carefully to provide maximum benefit at a low cost. The
following are principals used to that effect:

Use jax-rs framework or .net equivalent (for .net applications)

Do not use session or any other server state mechanism

Output should be JSON or XML.

Cross-domain services should enable and configure CORS but if careful analysis is

performed JSONP is acceptable in cases where no private data is contained. In a

previous example “FetchServiceAction” contains private data and should not return

JSONP. CNS should enable CORS for cross-domain requests

e Microservices cannot contain or return Ul content of any kind.

e Should be designed to be as platform independent as possible. Use configuration if
needed. Do not use the filesystem or OS unless that is a specific function of the
microservice.

e Document microservice API's as a regular API.

e Always deploy through scripting and automation infrastructure. This is VERY
important to build and maintain flexibility within the organization. White glove
deployments are not scriptable and degrade the environment for everyone.

e The microservice team members should not be on the Ul team for the app they are
working on. This creates laziness in the code as developers can write the
microservice and the Ul that interacts with it and cut corners.

e Always rotate teams. Microservice code should be small and focused on a specific

task. Having a microservice so specialized that only 1 person is familiar with and

comfortable working on has been designed wrong. Individual developers should be
able to pick up a microservice comfort level within 2 weeks. Rotate developers every

6 — 12 months, or more or less often based on desires but rotation should always

occur after a period of time.

	Introduction
	Contents
	Overview
	Technical Details – UI/UX
	Infrastructure

	Technical Details – Server-Side Application
	Microservice Rules and Recommendations

